TWOJA PRZEGLĄDARKA JEST NIEAKTUALNA.

Wykryliśmy, że używasz nieaktualnej przeglądarki, przez co nasz serwis może dla Ciebie działać niepoprawnie. Zalecamy aktualizację lub przejście na inną przeglądarkę.

 

Visual Optics Group

In vivo wobbling paper accepted!

Data: 11.02.2025

Good news again!

We proudly present our new paper "Biomechanical Simulations of Crystalline Lens Oscillations Resulting from the Changes in the Gaze in an Accommodated Eye" authored by Ali Dahaghin, Milad Salimibani, Agnieszka Boszczyk, Agnieszka Jóźwik, Jorge Grasa, Joanna Przeździecka-Dołyk and Damian Siedlecki. The study has been finally accepted for publication in Frontiers in Bioengineering and Biotechnology (section Biomechanics).

Abstract:

Purpose: The goal of the study is to introduce a generic, versatile biomechanical model that aims to reproduce the dynamic wobbling phenomenon. 
Methods: A systematic strategy is used, which includes a) capturing the in vivo data on a group of healthy volunteers, b) analyzing the changes in Purkinje images over time, and c) performing the combined biomechanical and optical simulations to develop the model that might be useful for understanding the mechanical behavior of the lens during wobbling and its influence on ocular dynamics.
Results: Examples of lens wobbling patterns for six measured eyes were presented, and parameters characterizing the oscillatory motion were determined, including frequency of oscillations, Q-factor, damping factor and time constant. The average values of these parameters are the following: frequency: 20.0 ± 2.4 Hz; Q-factor: 1.86 ± 0.44; damping factor: 0.27 ± 0.06; time constant: 0.11 ± 0.06 s. The data reproduced by means of simulations: frequency: 19.3 Hz; Q-factor: 2.17; damping factor: 0.23; time constant: 0.15 s. This comparison reveals a good agreement between the measured and reconstructed data with the values being within the standard deviation limits.
Conclusion: The developed generic model together with the presented methodology is able to reconstruct the typical crystalline lens wobbling dynamics with a satisfying accuracy. However, the observed intersubject variability highlights the need for personalized biomechanical models. The introduced model may constitute the basis for future individualization of the data, bringing broad perspectives for prospective investigations aimed to explain the biomechanical mechanisms within the eye.

The study is a result of our international collaboration with Applied Mechanics and Bioengineering group from University of Zaragoza, Spain.

  • Ali Dahaghin is an ESR in the OBERON project funded within the framework of the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 956720.
  • Milad Salimibani, Agnieszka Boszczyk, Agnieszka Jóźwik, Joanna Przeździecka-Dołyk and Damian Siedlecki: grant number 2019/35/B/ST7/03998 (National Science Centre, Poland).
  • FEM simulations have been carried out using resources provided by Wroclaw Centre for Networking and Supercomputing (http://wcss.pl), grant No. 556.
Politechnika Wrocławska © 2025